首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9276篇
  免费   1164篇
  国内免费   2897篇
化学   10117篇
晶体学   228篇
力学   91篇
综合类   46篇
数学   15篇
物理学   2840篇
  2024年   7篇
  2023年   153篇
  2022年   235篇
  2021年   362篇
  2020年   564篇
  2019年   376篇
  2018年   333篇
  2017年   466篇
  2016年   528篇
  2015年   491篇
  2014年   589篇
  2013年   865篇
  2012年   595篇
  2011年   773篇
  2010年   551篇
  2009年   645篇
  2008年   608篇
  2007年   689篇
  2006年   592篇
  2005年   532篇
  2004年   458篇
  2003年   454篇
  2002年   344篇
  2001年   282篇
  2000年   245篇
  1999年   214篇
  1998年   199篇
  1997年   175篇
  1996年   150篇
  1995年   159篇
  1994年   141篇
  1993年   133篇
  1992年   112篇
  1991年   77篇
  1990年   52篇
  1989年   38篇
  1988年   44篇
  1987年   23篇
  1986年   21篇
  1985年   15篇
  1984年   7篇
  1983年   5篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1978年   2篇
  1977年   3篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
ZnO is a defect‐governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect‐related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22 % relative to the bare nanotubes.  相似文献   
92.
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs‐RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.  相似文献   
93.
The structure of FeOx species supported on γ‐Al2O3 was investigated by using Fe K‐edge X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2O3 and co‐gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α‐Fe2O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron‐oxide crystals was not observed at Fe loadings of less than 9.0 wt %. The Fe K‐edge XAFS was characterized by a clear pre‐edge peak, which indicated that the Fe?O coordination structure deviates from central symmetry and that the degree of Fe?O?Fe bond formation is significantly lower than that in bulk samples at low Fe loading (<9.0 wt %). Fe K‐edge extended XAFS oscillations of the samples with low Fe loadings were explained by assuming an isolated iron‐oxide monomer on the γ‐Al2O3 surface.  相似文献   
94.
A facile three‐step co‐precipitation method is developed to synthesize graphitic carbon nanofibers (CNFs) decorated with ZnO nanoparticles (NPs). By interchanging intermediate steps of the reaction processes, two kinds of nanohybrids are fabricated with stark morphological and physicochemical differences. The morphologies differ because of the different chemical environments of the NP/nanocluster formation. The hybrid with larger and non‐uniform ZnO nanocluster size is formed in liquid phase and resulted in considerable interfacial defects that deteriorate the charge‐transfer properties. The hybrid with smaller and uniform ZnO NPs was formed in a dry solid phase and produced near‐defect‐free interfaces, leading to efficient charge transfer for superior photocatalytic performance. The results broaden the understanding of the anchoring/bonding mechanism in ZnO/CNF hybrid formation and may facilitate further development of more effective exfoliation strategies for the preparation of high‐performance composites/hybrids.  相似文献   
95.
This study investigated the protective effects of the ethanolic extract of Mukia maderaspatana against indomethacin-induced gastric ulcer in rats. Gastric ulceration was induced by single intraperitoneal injection of indomethacin (30 mg/kg b.wt.). M. maderaspatana extract produced significant reduction in gastric mucosal lesions, malondialdehyde and serum tumour necrosis factor-α associated with a significant increase in gastric juice mucin content and gastric mucosal catalase, nitric oxide and prostaglandin E2 levels. The volume and acidity of the gastric juice decreased in pretreated rats. The plant extract was evaluated in the gastric juice of rats, untreated has showed near normal levels in pretreated rats. The M. maderaspatana was able to decrease acidity and increase the mucosal defence in the gastric area, therefore justifying its use as an antiulcerogenic agent. Ranitidine significantly increased pH value and decreased pepsin activity and gastric juice free and total acidity. The anti-ulcer effect was further confirmed histologically.  相似文献   
96.
Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid‐phase extraction method for the preconcentration of phthalate esters such as di‐n‐butyl phthalate, butyl phthalate, dihexyl phthalate, and di‐(2‐ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05–0.1 μg/L and precision in the range of 1.1–2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4–99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon‐based ring or hydrophobic pollutants.  相似文献   
97.
This study describes the enrichment ability of ZnO‐modified methacrylic acid‐co‐ethylene dimethacrylate polymer monoliths as stationary phases for the simultaneous determination of antibiotics (ofloxacin, ciprofloxacin, enoxacin, and pefloxacin) combined with high‐performance liquid chromatography. The prepared monolith was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier‐transformed infrared spectroscopy, and thermogravimetric analysis. The polymer monolith microextraction method has been applied to the enrichment of fluoroquinolone antibiotics and satisfactory results were obtained in the analysis of water samples. Compared with the conventional methacrylic acid based monolith, the developed monolith exhibited a higher enrichment capacity because of the introduction of zinc oxide into the preparation process.  相似文献   
98.
The synthesis and energetic properties of a novel N‐oxide high‐nitrogen compound, 6‐amino‐tetrazolo[1,5‐b]‐1,2,4,5‐tetrazine‐7‐N‐oxide, are described. Resulting from the N‐oxide and fused rings system, this molecule exhibits high density, excellent detonation properties, and acceptable impact and friction sensitivities, which suggests potential applications as an energetic material. Compared to known high‐nitrogen compounds, such as 3,6‐diazido‐1,2,4,5‐tetrazine (DiAT), 2,4,6‐tri(azido)‐1,3,5‐triazine (TAT), and 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine (TAAT), a marked performance and stability increase is seen. This supports the superior qualities of this new compound and the advantage of design strategy.  相似文献   
99.
使用高温水解-离子色谱法对钴酸锂中痕量的氯进行分析测定。样品在1 100℃高温下通入氧气与水蒸气进行水解反应,生成氯化氢气体随载气带出,经冷凝后接收,并通过离子色谱法对氯的含量进行测定。以NaHCO3(4.5mmol/L)与Na2CO3(2.7mmol/L)的混合溶液为淋洗液,经SH-AG-1保护柱及SH-AC-1分离柱分离,Cl-在0.05~5.00mg/L范围内浓度与峰面积呈线性关系,检出限(3S)为0.010mg/L。方法测定氯的加标回收率在92%~96%,相对标准偏差(n=11)在3.0%~5.3%,方法准确、可靠。  相似文献   
100.
CeO2 nanoparticles have been proven to be competent photocatalysts for environmental applications because of their strong redox ability, nontoxicity, long-term stability, and low cost. We have synthesized CeO2 nanoparticles via solution combustion method using ceric ammonium nitrate as an oxidizer and ethylenediaminetetraacetic acid (EDTA) as fuel at 450 °C. These nanoparticles exhibit good photocatalytic degradation and antibacterial activity. The obtained product was characterized by various techniques. X-ray diffraction data confirms a cerianite structure: a cubic phase CeO2 having crystallite size of 35 nm. The infrared spectrum shows a strong band below 700 cm−1 due to the Ce−O−Ce stretching vibrations. The UV/Vis spectrum shows maximum absorption at 302 nm. The photoluminescence spectrum shows characteristic peaks of CeO2 nanoparticles. Scanning electron microscopy (SEM) images clearly show the presence of a porous network with a lot of voids. From transmission electron microscopy (TEM) images, it is clear that the particles are almost spherical, and the average size of the nanoparticles is found to be 42 nm. CeO2 nanoparticles exhibit photocatalytic activity against trypan blue at pH 10 in UV light, and the reaction follows pseudo first-order kinetics. Finally, CeO2 nanoparticles also reduce CrVI to CrIII and show antibacterial activity against Pseudomonas aeruginosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号